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a b s t r a c t

The paper presents an iterative algorithm for studying a nonlinear shallow-water wave
equation. The equation is written as an evolution equation, involving only first-order spa-
tial derivatives, coupled with the Helmholtz equation. We propose a two-step iterative
method that first solves the evolution equation by the implicit midpoint rule and then
solves the Helmholtz equation using a three-point sixth-order compact scheme. The
first-order derivative terms in the first step are approximated by a sixth-order disper-
sion-relation-preserving scheme that preserves the physically inherent dispersive nature.
The compact Helmholtz solver, on the other hand, allows us to use relatively few nodal
points in a stencil, while achieving a higher-order accuracy. The midpoint rule is a sym-
plectic time integrator for Hamiltonian systems, which may be a preferable method to
solve the spatially discretized evolution equation. To give an assessment of the disper-
sion-preserving scheme, we provide a detailed analysis of the dispersive and dissipative
errors of this algorithm. Via a variety of examples, we illustrate the efficiency and accuracy
of the proposed scheme by examining the errors in different norms and providing the rates
of convergence of the method. In addition, we provide several examples to demonstrate
that the conserved quantities of the equation are well preserved by the implicit midpoint
time integrator. Finally, we compare the accuracy, elapsed computing time, and spatial and
temporal rates of convergence among the proposed method, a complete integrable particle
method, and the local discontinuous Galerkin method.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The shallow-water wave equation (which has come to be known as the CH equation, for Camassa–Holm equation) [3],
ut þ 2jux � uxxt þ 3uux ¼ 2uxuxx þ uuxxx; ð1:1Þ
results from an asymptotic expansion of the Euler equations governing the motion of an inviscid fluid whose free surface can
exhibit gravity-driven wave motion [4,18]. The small parameters used to carry out the expansion are the aspect ratio, where-
by the depth of the fluid is assumed to be much smaller than the typical wavelength of the motion, and the amplitude ratio,
or ratio between a typical amplitude of wave motion and the average depth of the fluid. Thus, the equation is a member of
the class of weakly nonlinear (due to the smallness assumption on the amplitude parameter) and weakly dispersive (due to
the long wave assumption parameter) models for water wave propagation. However, at variance with its celebrated close
. All rights reserved.
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relatives in this class, such as the Korteweg-de Vries (KdV) and Benjamin–Bona–Mahony (BBM) equations, these small
parameters are assumed to be linked only by a relative ordering, rather than by a power-law relation. This allows us to retain
terms on the right-hand-side that would be of higher order with respect to both the KdV and BBM expansions, and, in prin-
ciple, to consider dynamical regimes in which nonlinearity is somewhat dominant with respect to wave dispersion. This
equation possesses the remarkable property of complete integrability, as evidenced by its Lax-pair representation, and per-
mits an infinite number of nonlocal conserved properties [3,21]. When j ¼ 0 in Eq. (1.1), the equation becomes the disper-
sionless version of a shallow-water wave equation that admits peakon solutions.

There is extensive literature on numerical analysis and implementation for the KdV type of equations; however, numer-
ical algorithms for the shallow-water wave equation have only received attention recently. While no attempt will be made
here to provide a detailed reference list, the following are examples of recent algorithms developed for the shallow-water
wave equation. In [5–9], a completely integrable particle method is introduced that solves the equation in infinite domains,
semi-infinite domains with the zero boundary condition on one side, periodic domains, and homogeneous finite domains.
The particle method is based on the Hamiltonian structure of the equation, an algorithm corresponding to a completely inte-
grable particle lattice. Each periodic particle in this method travels along a characteristic curve of the shallow-water wave
model, determined by solving a system of nonlinear integro-differential equations. This system of nonlinear integro-differ-
ential equations can be viewed as particle interaction through a long-range potential (here position and momentum depen-
dent). Besides the particle method, a method based on multipeakons is developed in [16] for Eq. (1.1). The convergence proof
of this method is given in [17]. A finite difference scheme that can handle general H1 initial data is introduced in [13]. A
pseudospectral method is developed in [19] for the travelling wave solution of Eq. (1.1). Similar methods, a semi-discretiza-
tion Fourier–Galerkin method and a Fourier-collocation method, are developed in [20]. A finite volume method, within the
adaptive upwinding context, is developed for the peakon solution of Eq. (1.1) [1]. A local discontinuous Galerkin finite ele-
ment method is developed in [24].

Eq. (1.1) involves two third-order derivative terms, uuxxx and uxxt . For most numerical schemes, except the particle method
and the related methods, certain care is required to discretize those terms in order to achieve a higher-order accuracy while
preserving the physically inherent dispersive nature of the equation. In the study, however, we avoid discretizing both of the
third-order derivative terms by applying the Helmholtz operator to u
mðx; tÞ � ð1� @2
x Þuðx; tÞ; ð1:2Þ
and rewrite the Eq. (1.1) into an equivalent formulation
mt ¼ �2ðmþ jÞux � umx: ð1:3Þ
Note that Eq. (1.3) involves only the first-order derivative terms. As a result of the new formulation, we develop a two-step
iterative numerical algorithm that first solves the evolution Eq. (1.3) by a midpoint time integrator and then solves the Helm-
holtz equation (1.2) with a three-point sixth-order compact scheme. The first-order derivative terms in the first step are
approximated by a sixth-order dispersion-relation-preserving scheme that preserves the physically inherent dispersive nat-
ure. The compact Helmholtz solver, on the other hand, allows us to use relatively few nodal points in a stencil, while achiev-
ing a higher-order accuracy. The principle of the two-step iterative algorithm is to solve the first-order equation and then to
solve the Helmholtz equation, repeating the process until the convergence criterions are satisfied.

It is worth noting that the two-step iterative algorithm developed in the following sections can be generalized into a
framework of numerical methods that solve a whole class of partial differential equations involving the Helmholtz operator
[10]. We also note that a higher-dimensional extension of the shallow-water wave equation is the very well-known Navier–
Stokes-alpha turbulence model [11]. The proposed one-dimensional algorithm can be directly extended to solve the higher-
dimensional model (extension for other methods, such as the integrable particle method, may not be so straightforward).
The Navier–Stokes-alpha model potentially could answer some long-standing questions in the field of turbulent flows,
and an accurate numerical method could be the key to achieving the goal. A careful examination of the one-dimensional
algorithm is a fundamental first step on the path towards the development of a higher-dimensional algorithm.

2. Two-step iterative algorithm

The evolution Eq. (1.3) can be solved by a standard method of lines (MOL). Let mn ¼ mðtn; xÞ and mnþ1 ¼ mðtn þ Dt; xÞ be
the semi-discretized m values at time leveln and nþ 1, respectively. The MOL, using the midpoint time integrator, for Eq.
(1.3) yields
mnþ1 �mn

Dt
¼ �2ðmnþ1=2 þ jÞunþ1=2

x � unþ1=2 mnþ1=2
x ; ð2:1Þ
where
mnþ1=2 ¼ 1
2
ðmnþ1 þmnÞ and unþ1=2 ¼ 1

2
ðunþ1 þ unÞ: ð2:2Þ
The first-order derivative terms mnþ1=2
x and unþ1=2

x are approximated by a sixth-order dispersion-relation-preserving scheme,
using the nodal values of (2.2). We discuss the sixth-order scheme in detail in the next section. It is worth noting that the
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midpoint time integrator is a symplectic integrator for Hamiltonian systems [2,15], which may be a preferable method for
solving the system of spatially discretized equations. Since the evolution Eq. (2.1) is coupled with the Helmholtz equation, it
is necessary to introduce an iterative scheme to obtain mnþ1 and unþ1 from mn and un. We do this by alternating between
solving Eq. (2.1) and the Helmholtz equation, as described in the following steps:

� Step 1: Given an initial guess for unþ1=2 and mnþ1=2, denoted uð0Þ;nþ1=2 and mð0Þ;nþ1=2 respectively, we solve the evolution Eq.
(2.1) to obtain mð1Þ;nþ1. The initial guess is based on Taylor series expansions:
mð0Þ;nþ1=2 ¼ 1:5mn � 0:5mn�1;

uð0Þ;nþ1=2 ¼ 1:5un � 0:5un�1;
ð2:3Þ

where n P 1. When n ¼ 0, we impose mð0Þ;1=2 ¼ m0 and uð0Þ;1=2 ¼ u0, where u0 is the initial condition and m0 ¼ u0 � u0xx.
� Step 2: Using mð1Þ;nþ1 and a three-point sixth-order compact scheme, we solve the Helmholtz equation to obtain uð1Þ;nþ1.
� Step 3: Find mð1Þ;nþ1=2 and uð1Þ;nþ1=2 by Eq. (2.2) and solve the evolution Eq. (2.1) to obtain mð2Þ;nþ1.
� Step 4: Repeat Step 2 and Step 3 for the next iteration until the ðiþ 1Þth iteration, for which the residuals, in the maximum

norm, of both Eq. (2.1) and the Helmholtz equation are less than our convergence criterions:
max
xj;j¼1;N

mðiþ1Þ;nþ1 �mn

Dt
þ ð2ðmnþ1=2 þ jÞunþ1=2

x þ unþ1=2 mnþ1=2
x Þ

����
���� 6 e ;

max
xj;j¼1;N

jmðiþ1Þ;nþ1 � ðuðiþ1Þ;nþ1 � uðiþ1Þ;nþ1
xx Þj 6 e;

ð2:4Þ
where N is the number of grid points, and the value for the threshold error e is typically chosen to be 10�12 throughout our
computations. Our numerical experiments indicate that the number of iterations needed for convergence with this value is
less than 20 in general.

We remark that for the initial guess (2.3), if we let tnþ1=2 ¼ tn þ Dt=2, the Taylor series expansions for mðtnÞ and mðtn�1Þ
about tnþ1=2 give rise to
mðtnþ1=2Þ ¼ 1:5mðtnÞ � 0:5mðtn�1Þ þ OðDt2Þ: ð2:5Þ
Therefore, if we let mn ¼ mðtnÞ and mn�1 ¼ mðtn�1Þ, the initial guess mnþ1=2 in (2.3) is an OðDt2Þ approximation for mðtnþ1=2Þ.

3. Dispersion-relation-preserving scheme

The spacial accuracy of the proposed scheme depends on how accurately we can approximate the first-order derivative
terms. In particular, if the equation of interest is a dispersive equation, such as the shallow-water wave equation, a disper-
sion-relation-preserving scheme is necessary to ensure the accuracy of numerical solutions. In this section, we develop a dis-
persion-relation-preserving scheme for the first-order derivative terms.

Suppose that the first derivative term at the grid point i is approximated by the following algebraic equation:
@m
@x

����
i

¼ 1
h
ðc1mi�5 þ c2mi�4 þ c3mi�3 þ c4mi�2 þ c5mi�1 þ c6mi þ c7miþ1 þ c8miþ2 þ c9miþ3Þ: ð3:1Þ
For simplicity, we consider the case involving only the positive convective coefficient in the above equation, since the der-
ivation will be the same for the negative convective coefficient.

Derivation of expressions for c1 � c9 is followed by applying the Taylor series expansions for mi�1;mi�2;mi�3;mi�4 and mi�5

with respect to mi and then eliminating the seven leading error terms derived in the modified equation. Elimination of these
error terms enables us to derive the following set of algebraic equations:
c1 þ c2 þ c3 þ c4 þ c5 þ c6 þ c7 þ c8 þ c9 ¼ 0; ð3:2Þ
� 5c1 � 4c2 � 3c3 � 2c4 � c5 þ c7 þ 2c8 þ 3c9 ¼ 1; ð3:3Þ
25
2

c1 þ 8c2 þ
9
2

c3 þ 2c4 þþ
1
2

c5
1
2

c7 þ 2c8 þ
9
2

c9 ¼ 0; ð3:4Þ

� 125
6

c1 �
32
3

c2 �
9
2

c3 �
4
3

c4 �
1
6

c5 þ
1
6

c7 þ
4
3

c8 þ
9
2

c9 ¼ 0; ð3:5Þ

625
24

c1 þ
32
3

c2 þ
27
8

c3 þ
2
3

c4 þ
1

24
c5 þ

1
24

c7 þ
2
3

c8 þ
27
8

c9 ¼ 0; ð3:6Þ

� 625
24

c1 �
128
15

c2 �
81
40

c3 �
4

15
c4 �

1
120

c5 þ
1

120
c7 þ

4
15

c8 þ
81
40

c9 ¼ 0; ð3:7Þ

3125
144

c1 þ
256
45

c2 þ
81
80

c3 þ
4

45
c4 þ

1
720

c5 þ
1

720
c7 þ

4
45

c8 þ
81
80

c9 ¼ 0 ð3:8Þ
To uniquely determine all nine introduced coefficients shown in (3.1), we need two more equations. Following the sugges-
tion in [22], we derive the equations by preserving the dispersion relation that governs the relation between the angular
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frequency and the wavenumber of the first-order dispersive term. To obtain the two extra equations based on the principle
of preservation of the dispersion relation, we note that the Fourier transform pair for m is
~mðkÞ ¼ 1
2p

Z þ1

�1
mðxÞ e�ikx dx; ð3:9Þ

mðxÞ ¼
Z þ1

�1
~mðaÞ eikx dk: ð3:10Þ
If we perform the Fourier transform on each term shown in Eq. (3.1), we obtain that the wavenumber k is approximated by
the following expression
k ’ �i
h
ðc1 e�i5kh þ c2 e�i4kh þ c3 e�i3kh þ c4 e�i2kh þ c5 e�ikh þ c6 þ c7 eikh þ c8 ei2kh þ c9 ei3khÞ; ð3:11Þ
where i ¼
ffiffiffiffiffiffiffi
�1
p

.
Supposing that the effective wavenumber ~k is exactly equal to the right-hand side of Eq. (3.11) [22], we have k � ~k. In

order to acquire a better dispersive accuracy, ~k should be made as close to k as possible. This implies that E defined in
the sense of the 2-norm of the error between k and ~k will be the local minimum for such a ~k. The error E is defined as follows
EðkÞ ¼
Z p

2

�p
2

jk h� ~khj2 dðkhÞ ¼
Z p

2

�p
2

jc� ~cj2 dc; ð3:12Þ
where h is denoted as the grid size and c ¼ kh. For E to be a local minimum, we assume the following two extreme conditions
@E
@c4
¼ 0; ð3:13Þ

@E
@c5
¼ 0: ð3:14Þ
Under the above prescribed extreme conditions, the two algebraic equations needed for the coefficients to be uniquely deter-
mined are
� 4
3

c1 þ 4c3 þ 2pc4 þ 4c5 �
4
3

c7 þ
4
5

c9 þ p ¼ 0; ð3:15Þ

� 4
3

c2 þ 4c4 þ 2pc5 þ 4c6 �
4
3

c8 þ 4 ¼ 0: ð3:16Þ
We remark that for a truly dispersion-relation-preserving scheme, i.e. the error E is truly a local minimum on the parameter
space, one will need to impose @E=@ci ¼ 0 for i ¼ 1; . . . ;9 to obtain nine equations for the coefficients. Our approach, instead,
(i) ensures the higher-order accuracy by letting the coefficients satisfy the Taylor series expansions and (ii) partially enforces
the requirements for a dispersion-relation-preserving scheme. Our numerical experiments show that the upwinding scheme
for the first-order derivative obtained by taking the derivatives about c4 and c5 for E (Eqs. (3.13) and (3.14)) produces the
least numerical errors. It is also worth noting that the integration interval shown in Eq. (3.12) needs to be sufficiently wide
to cover a complete period of sine (or cosine) waves.

Eqs. (3.15) and (3.16) together with Eqs. (3.2)–(3.8) yield the coefficients:
c1 ¼
1

50
1575p2 � 8340pþ 10624
�12432pþ 17408þ 2205p2

� �
; ð3:17Þ

c2 ¼ �
3

100
7875p2 � 42480pþ 55552
�12432pþ 17408þ 2205p2

� �
; ð3:18Þ

c3 ¼
1

75
55125p2 � 303240pþ 406976
�12432pþ 17408þ 2205p2

� �
; ð3:19Þ

c4 ¼ �
1

10
�62160pþ 85888þ 11025p2

�12432pþ 17408þ 2205p2

� �
; ð3:20Þ

c5 ¼ �
12

5ð21p� 64Þ ; ð3:21Þ

c6 ¼ �
7

100
17325p2 � 103440pþ 153344
�12432pþ 17408þ 2205p2

� �
; ð3:22Þ

c7 ¼
1

25
55125p2 � 318360pþ 457664
�12432pþ 17408þ 2205p2

� �
; ð3:23Þ

c8 ¼ �
9

50
2625p2 � 15440pþ 22656
�12432pþ 17408þ 2205p2

� �
; ð3:24Þ

c9 ¼
1
6

15p� 44
105p� 272

� �
: ð3:25Þ
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It is easy to show that the proposed upwinding scheme for the first-order derivative is sixth-order spatially accurate:
@m
@x
¼ @m
@x
jexact �

48
175

105p� 332
�12432pþ 17408þ 2205p2

� �
h6 @

7m
@x7 þ

7875p2 �39360pþ 45824
�12432pþ 17408þ 2205p2

� �
h7 @

8m
@x8 þOðh8Þþ � � � :

ð3:26Þ
4. Three-point sixth-order accurate compact Helmholtz solver
We introduce a compact scheme for solving the Helmholtz equation in this section. It is well known that in order to ob-
tain a higher-order numerical method for the Helmholtz equation, one can always introduce more points in a stencil. The
improved accuracy, however, comes at the cost of an expensive matrix calculation, due to the wider stencil. With the aim
of developing a numerical scheme that is higher-order accurate while using relative few stencil points in the finite difference
discretization, we introduce a compact scheme involving only three points in a stencil, but is sixth-order accurate.

Consider the following prototype equation
@2u
@x2 � ku ¼ f ðxÞ: ð4:1Þ
We first denote the values of @2u=@x2, @4u=@x4 and @6u=@x6 at a nodal point i as
@2u
@x2

�����
i

¼ si; ð4:2Þ

@4u
@x4

�����
i

¼ v i; ð4:3Þ

@6u
@x6

�����
i

¼ wi: ð4:4Þ
The compact scheme at point i starts with relating v, s and w with u as follows:
d0 h6wi þ c0 h4v i þ b0 h2si ¼ a1 uiþ1 þ a0 ui þ a�1 ui�1: ð4:5Þ
Based on physics, it is legitimate to set a1 ¼ a�1 since the Helmholtz equation is elliptic in nature. Having set a1 ¼ a�1, the
derivation is followed by expanding ui�1 with respect to ui. Substitution of these Taylor-series expansion equations into Eq.
(4.5) leads to
d0 h6wi þ c0 h4v i þ b0 h2si ¼ a0 þ 2a1ð Þui þ
h2

2!
ð2a1Þ

@2ui

@x2 þ
h4

4!
ð2a1Þ

@4ui

@x4 þ
h6

6!
ð2a1Þ

@6ui

@x6 þ
h8

8!
ð2a1Þ

@8ui

@x8 þ � � � : ð4:6Þ
Through a term-by-term comparison of the derivatives shown in Eq. (4.6), five simultaneous algebraic equations can be de-
rived. Hence, the introduced free parameters can be determined as a1 ¼ a�1 ¼ �1;a0 ¼ 2; b0 ¼ �1; c0 ¼ � 1

12 and d0 ¼ � 1
360.

Note that wi ¼ k3ui þ k2fi þ k @2 fi
@x2 þ @4 fi

@x4 ;v i ¼ k2ui þ kfi þ @2fi
@x2 , and si ¼ k ui þ fi. Eq. (4.5) can then be expressed as
a1uiþ1 þ ða0 � b0 h2 k� c0 h4k2 � d0 h6k3Þui þ a1ui�1 ¼ h2b0fi þ h4c0 kfi þ
@2fi

@x2

 !
þ h6d0 k2fi þ k

@2fi

@x2 þ
@4fi

@x4

 !" #
: ð4:7Þ
It follows that
uiþ1 � 2þ h2 kþ 1
12

h4k2 þ 1
360

h6k3
� �

ui þ ui�1 ¼ h2fi þ
1

12
h4 kfi þ

@2fi

@x2

 !
þ 1

360
h6 k2fi þ k

@2fi

@x2 þ
@4fi

@x4

 !
: ð4:8Þ
Using the proposed scheme, the corresponding modified equation for (4.1) can be derived as follows, after performing some
algebraic manipulation:
@2u
@x2 � k u ¼ f þ h6

20160
@8u
@x8 þ

h8

1814400
@10u
@x10 þ � � � þ H:O:T: ð4:9Þ
Eq. (4.9) shows that the 3-point stencil scheme is indeed sixth-order accurate. We implement a multigrid method using the
V-cycle and fully-weighted projection/prolongation with the red-black Gauss-Seidel smoother to solve the system of alge-
braic equations arising from discretization of the proposed scheme.



P.H. Chiu et al. / Journal of Computational Physics 228 (2009) 8034–8052 8039
5. Error analysis

In this section, we assess the proposed two-step iterative algorithm by providing a detailed error analysis for the mid-
point time integrator and the dispersion-relation-preserving scheme. After this we show the von Neumann analysis for
the midpoint time integrator. Close observation reveals that Eq. (2.1) is essentially a discretized version of a one-dimensional
linear scalar convection-reaction equation. Hence to analyze the error due to the proposed time-stepping algorithm and the
dispersion-relation-preserving scheme in the first step of the two-step iterative algorithm, we simply analyze numerical
solutions of a linear scalar convection-reaction equation obtained by the proposed schemes.

Consider a one-dimensional linear scalar convection-reaction equation
@/
@t
þ ca

@/
@x
þ cr/ ¼ 0; ð5:1Þ
where ca and cr are given constants. Applying the midpoint time integrator to the equation yields
/nþ1 � /n

Dt
þ 1

2
½ca ð/nþ1

x þ /n
xÞ þ cr ð/nþ1 þ /nÞ	 ¼ 0: ð5:2Þ
Substituting /nþ1
x and /n

x , approximated by the proposed sixth-order dispersion-relation-preserving scheme (3.17)–(3.23),
(3.23) and (3.25), into the above equation results in a nine-point-stencil difference equation at an interior point i:
/nþ1
i þ 1

2
ðA1/

nþ1
i�5 þ A2/

nþ1
i�4 þ A3/

nþ1
i�3 þ A4/

nþ1
i�2 þ A5/

nþ1
i�1 þ A6/

nþ1
i þ A7/

nþ1
iþ1 þ A8/

nþ1
iþ2 þ A9/

nþ1
iþ3 Þ

¼ /n
i �

1
2
ðA1/

n
i�5 þ A2/

n
i�4 þ A3/

n
i�3 þ A4/

n
i�2 þ A5/

n
i�1 þ A6/

n
i þ A7/

n
iþ1 þ A8/

n
iþ2 þ A9/

n
iþ3Þ; ð5:3Þ
where Ai ¼ caciDt=h; i ¼ 1; . . . ;5 and 7;8;9, and A6 ¼ cac6Dt=hþ crDt. If the initial condition is /ðx;0Þ ¼ expð i kx Þ, then the
exact solution of Eq. (5.1) is given by
/ðx; tÞ ¼ expf �cr t g expf i kðx� catÞg: ð5:4Þ
Suppose that a numerical solution is contaminated by numerical amplitude and phase errors and is expressed by
~/ðx; tÞ ¼ exp � cr
kr

c2

� �
t

� �
exp i k x� ca

ki

c
t

� �� �
; ð5:5Þ
where the wavenumber k and the so-called modified wavenumber c ¼ kh are defined in Section 3, Eq. (3.11). It is clear that if
ki ¼ c and kr ¼ c2, then we do not have either phase or amplitude errors. Since the errors propagate in both time and space,
the propagated numerical solution can be written as
~/ðxþ h; t þ DtÞ ¼ ~/ðx; tÞ exp � cr
kr

c2

� �
Dt

� �
exp i k h� ca

ki

c
Dt

� �� �
; ð5:6Þ
or
~/ðxþ h; t þ DtÞ ¼ ~/ðx; tÞ expðikhÞ expð�pþ i �qÞ: ð5:7Þ
Comparing Eqs. (5.6) and (5.7), we obtain the amplitude and phase errors, in terms of kr and ki,
kr ¼
��p
mx Rx
c2

� 	 ; ð5:8Þ

ki ¼
�q
mx
; ð5:9Þ
where
mx ¼
caDt

h
; Rx ¼

crh
ca

: ð5:10Þ
To determine �p and �q in Eqs. (5.8) and (5.9), letting /n
i ¼ ~/ðx; tÞ and substituting the expressions of /i;/i�1;/i�2;/i�3;/i�4, and

/i�5 at the corresponding time levels, n or nþ 1, into Eq. (5.3), we obtain
e�pðei�q þ 1
2
ðA1eið�q�5cÞ þ A2eið�q�4cÞ þ A3eið�q�3cÞ þ A4eið�q�2cÞ þ A5eið�q�cÞ þ A6ei�q þ A7eið�qþcÞ þ A8eið�qþ2cÞ þ A9eið�qþ3cÞÞÞ

¼ 1� 1
2
ðA1eið�5cÞ þ A2eið�4cÞ þ A3eið�3cÞ þ A4eið�2cÞ þ A5eið�cÞ þ A6 þ A7eiðcÞ þ A8eið2cÞ þ A9eið3cÞÞ: ð5:11Þ
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From the imaginary and real parts of the above equation, we obtain �p as functions of �q:
(a)

k i

0.

1.

2.

Fig. 5.1
indistin
from the imaginary part of ð5:11Þ : �p ¼ log
1
2

�n
1þ 1

2
�m


 �
sin �q� 1

2
�n cos �q

( )
; ð5:12Þ

from the real part of ð5:11Þ : �p ¼ log
1� 1

2
�m

1þ 1
2

�m

 �

cos �qþ 1
2

�n sin �q

( )
; ð5:13Þ
where
�m ¼ A6 þ ðA5 þ A7Þ cos cþ ðA4 þ A8Þ cosð2cÞ þ ðA3 þ A9Þ cosð3cÞ þ A2 cosð4cÞ þ A1 cosð5cÞ; ð5:14Þ
�n ¼ ðA5 � A7Þ sin cþ ðA4 � A8Þ sinð2cÞ þ ðA3 � A9Þ sinð3cÞ þ A2 sinð4cÞ þ A1 sinð5cÞ; ð5:15Þ
and log is the natural logarithm.
Solving Eqs. (5.12) and (5.13) for q, we obtain
�q ¼ � tan�1 4�n
�n2 � 4þ �m2

� �
: ð5:16Þ
It is shown in Fig. 5.1(a) that ki and c are visually indistinguishable when c 6 1:9. This means that there are small or no errors
for the method when c 6 1:9. Here ki is plotted against c for mx ¼ 0:1 and Rx ¼ 1. For a large c, either due to a large step size h
or due to a larger wavenumber k, or both, the predicted phase of the numerical solution is less accurate. Similarly for the
amplitude error, Fig. 5.1(b) shows that kr and c2 are visually indistinguishable when c 6 1:7.

In addition to phase and amplitude errors, the numerical group velocity is also an indication of the quality of numerical
algorithms, especially for numerical algorithms that solve dispersive equations. From Eq. (5.5), the numerical group velocity
is found by
Cg ¼
dx
dk

; where x ¼ ca k
ki

c
: ð5:17Þ
When ki ¼ c, the exact group velocity Ce ¼ ca. Fig. 5.2 plots the ratio of the numerical group velocity Cg and the exact group
velocity Ce versus c. It shows that when c 6 1:7, the numerical group velocity and the exact group velocity are almost iden-
tical. When c increases, the numerical group velocity becomes less accurate.

The von Neumann analysis [23] shows that the proposed midpoint time integrator is unconditionally stable. To this end,
define the amplification factor of the numerical solution at the grid point i to be
G ¼ /nþ1
i

/n
i

; ð5:18Þ
and G can be written in the form
G ¼ e�pð cos �qþ i sin �q Þ; ð5:19Þ
γ
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. The dissipation and phase (dispersion) error analysis. (a) The plot of ki , the phase error plot. ki and the modified wavenumber c are visually
guishable when c 6 1:9. (b) The plot of kr , the dissipation error plot. kr and c2 are visually indistinguishable when c 6 1:7.
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where �p and �q are the same as those defined in (5.7), (5.12), (5.13), and (5.16). Define the modified frequency
vx ¼
2p ��m

2L
h; ��m ¼ 0;1;2;3; . . . ;M; ð5:20Þ
where h is the grid size, and 2L is the period of fundamental frequency ð ��m ¼ 1Þ. Since M h ¼ L, we have 0 6 vx <6 p. As
shown in Fig. 5.3(a), since the magnitude of the modulus jGj, plotted versus vx, is smaller than one, by definition the proposed
scheme is classified to be unconditionally stable. The amplification factor shown in (5.19) can be rewritten in the exponential
form as G ¼ jGj e i h, where the phase angle h is defined to be
h ¼ tan�1 ImðGÞ
ReðGÞ

����
����: ð5:21Þ
The exact phase angle is he ¼ �vx mx, where mx is given in (5.10), and the relative phase-shift error is then given as
S ¼ h
he
¼

tan�1 ImðGÞ
ReðGÞ

��� ���
�vx mx

: ð5:22Þ
Fig. 5.3(b) shows S plotted versus vx for mx ¼ 0:1 and Rx ¼ 1. It shows that S ¼ 1 before vx reaches p=2, i. e. the relative
phase-shift error is either very small or nonexistent before the modified frequency vx reaches p=2.

6. Numerical results and validation

In this section, we provide several test problems to validate the proposed scheme and elucidate its computational
properties.

6.1. Travelling wave solution in periodic domains

The first example is the traveling wave solution in periodic domains considered in [8,9]. The periodic travelling wave
solution is given by uðx; tÞ ¼ Uðx� c tÞ, provided that the minima of u are located at u ¼ 0 and the wave elevation is positive.
In this case one finds that the solution of the travelling wave equation is given by
U0 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�U3 þ ðc � 2jÞU2 þ CðAÞU

c � U

s
; ð6:1Þ
where c and A are denoted as the wave speed and the wave amplitude, respectively, and the integration constant C is a func-
tion of A. Integration of Eq. (6.1) leads to the expression,
x ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1ðb2 � b3Þ

p ðb1 � b2ÞPðu;b2; TÞ: ð6:2Þ
γ
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Fig. 5.2. Plots of the ratio of group velocity Cg

Ce
against the wavenumber c at Rx ¼ 1 and mx ¼ 0:1.
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Fig. 5.3. Plots of jGj and S versus vx at vx ¼ 0:1 and Rx ¼ 1. Note that the angle vx is from 0 and p, counterclockwise. (a) The modulus of amplification factor
jGj. (b) The relative phase-shift error S. They show that both the amplitude and the phase either have very small errors or have no errors at all before the
modified frequency vx reaches p=2.
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The wavelength L of this periodic solution can be written as
(a)

u

0.

1.

Fig. 6.1
solution
L ¼ 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1ðb2 � b3Þ

p ðb1 � b2ÞPðu; b2; TÞ: ð6:3Þ
Details about the variables x;u; b; bi ði ¼ 1; . . . ;3Þ, c, and T are discussed in [8,9].
The parameters used in the test problem are c ¼ 2;j ¼ 1=2, and the integration constant C ¼ 1, which altogether yield the

wavelength (period) of L � 6:3019 according to Eq. (6.3). The total time for the wave to travel through the domain and back
to the initial position is t ¼ 3:1509. The time step used in this calculation is Dt ¼ 1

4 Dx while the grid size is Dx ¼ 0:0492 (or
128 cells). Fig. 6.1(a) shows the numerical and the exact solutions at t ¼ 0:788. The initial data is the dashed line. A good
agreement with the analytic solution is clearly demonstrated. To show that the proposed scheme is phase accurate, we also
plot the predicted solution at t ¼ 3:1509. As Fig. 6.1(b) is shown, the waveform over one period of time and the waveform of
the initial data are visually identical.

It was shown in [5] that Eq. (1.1) can be written as
@Wx

@t
þ @ðuWxÞ

@x
¼ 0; ð6:4Þ
x
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. The predicted traveling wave solution at (a) t ¼ 0:787732, (b) t ¼ 3:1509 (over one period). The numerical solutions are compared with the exact
s that are plotted using square boxes in the illustrations.
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where Wx � @W
@x


 �
is defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ j
p

, and m ¼ u� uxx. If we define
Fig. 6.2
well pr
times.)

Table 6
The spa

Num

Erro
Rate

Table 6
The tem

Dt

Erro
Rate
W ¼
Z L

0
Wx dx; ð6:5Þ
then we can write Eq. (6.4) as
Wt þ uWx ¼ 0: ð6:6Þ
This is an advection equation, where the conserved quantity W is advected by u and is therefore a constant in time. In Fig. 6.2,
we plot the conserved quantities, mass, the Hamiltonians, and W versus time, where the mass and the Hamiltonians are de-
fined as
M ¼
Z L

0
udx; H1 ¼

1
2

Z L

0
ðu2 þ ðuxÞ2Þdx; H2 ¼

1
2

Z L

0
ðu3 þ uðuxÞ2 þ 2ju2Þdx: ð6:7Þ
Fig. 6.2 clearly shows that the mass is well preserved, with the magnitude of 3.428, by the proposed algorithm. The Ham-
iltonians H1 and H2 are also invariant with the values of 2.996 and 5.163. The conserved quantity W is well preserved by
the algorithm and has the value 5.452.

We conduct both grid and time refinement studies for the proposed method. The spatial rate of convergence test is carried
out at the constant time step, Dt ¼ 0:12308
 10�3, that is much smaller than the grid size of the finest grid. As for the tem-
poral rate of convergence test, we simply consider the case using a fixed grid size Dx ¼ 0:0492, which is smaller in magnitude
than the finest time step used in our calculation. The final time for both tests is t ¼ 3:1509. The spatial and temporal rates of
time

co
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ve
d
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. Verification of the proposed algorithm. It shows that the quantities M, H1;H2, and W (see Eqs. (6.7) and (6.5) ) for the travelling wave problem are
eserved by the proposed algorithm for t > 300 (the time period of 100 cycles, i.e. the initial waveform goes out and in the periodic domain 100

.1
tial rate of convergence for the problem considered in Fig. 6.1. Note that the time increment Dt ¼ 0:12308
 10�3 is much smaller than the grid size.

ber of cells N 32 64 128

r in L2 norm 5.8714E�03 1.686E�04 3.290E�06
of convergence – 5.121 5.679

.2
poral rate of convergence for the problem considered in Fig. 6.1. The number of cells in the calculation is N ¼ 128.

2.46E�02 1.23E�02 6.15E�03

r in L2 norm 4.026E�03 1.025E�03 2.561E�04
of convergence – 1.973 2.000
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convergence are shown in Tables 6.1 and 6.2, respectively. The convergence rates are found approximately 5.4 in space and 2
in time, respectively, for the proposed scheme.

Table 6.3 shows the comparison between the proposed method and the particle method developed in [8,9] at the final
time t ¼ 3:1509 (over one period). A fixed small time step Dt ¼ 0:12308
 10�3 is used for both methods. For such a small
time step, the proposed method has much smaller errors compared with the particle method. Tables 6.4, 6.5 and 6.6 show
similar comparisons of the two methods, but the solutions are computed using a fixed ratio of c Dt

Dx, where c is the wave speed.
They show that the proposed method has smaller errors in the L2 norm, but is less efficient than the particle method. They
also show that when c Dt

Dx decreases, the errors of the proposed method decrease as well, but there is no such effect for the
particle method. It is no surprise that the overall rate of convergence is 2, when c Dt

Dx is fixed, since a second-order time inte-
grator is employed in the iterative algorithm. We are currently developing a sixth-order time integrator [12] for the proposed
iterative algorithm. We remark that all calculations are performed on a laptop with Intel� Pentium� M 1.6 GHz, 768 MB
DDR-RAM running on Microsoft� Windows� XP home edition.

6.2. Implicit midpoint time integrator

In this section, we demonstrate that the conserved quantities of the equation are well preserved by the implicit midpoint
time integrator. Consider a non-periodic initial condition
Table 6
The spa

Num

N ¼
N ¼
N ¼
N ¼

Table 6
The err

Num

N ¼
N ¼
N ¼
N ¼

Table 6
The err

Num

N ¼
N ¼
N ¼
N ¼

Table 6
The err

Num

N ¼
N ¼
N ¼
N ¼
u0ðxÞ ¼ sechðxÞ ð6:8Þ
.3
tial rate of convergence for the problem considered in Fig. 6.1. The time step used in the calculation is Dt ¼ 0:12308
 10�3.

ber of cells Error in L2 norm Rate of convergence

Current method Particle method Current method Particle method

32 5.871E�03 1.339E�02 – –
64 1.686E�04 3.190E�03 5.121 2.069
128 3.290E�06 7.532E�04 5.679 2.082
256 1.268E�07 1.903E�04 4.697 1.984

.4
ors and rate of convergence for the problem considered in Fig. 6.1. The time step used in the calculation is c Dt

Dx ¼ 1, where c is the wave speed.

ber of cells Error in L2 norm Rate of convergence CPU time

Current method Particle method Current method Particle method Current method Particle method

32 4.999E�02 1.339E�02 – – 1.40E�01 <1.0E�02
64 1.497E�02 3.190E�03 1.739 2.069 7.65E�01 1.56E�02
28 4.026E�03 7.532E�04 1.895 2.082 1.031 4.68E�02
256 1.028E�03 1.903E�04 1.968 1.984 1.671 2.18E�01

.5
ors and rate of convergence for the problem considered in Fig. 6.1. The time step used in the calculation satisfies c Dt

Dx ¼ 1
2.

ber of cells Error in L2 norm Rate of convergence CPU time

Current method Particle method Current method Particle method Current method Particle method

32 1.556E�02 1.339E�02 – – 1.09E�01 <1.0E�02
64 3.895E�03 3.190E�03 1.997 2.069 5.93E�01 3.12E�02
128 1.025E�03 7.532E�04 1.926 2.082 8.59E�01 1.09E�01
256 2.585E�04 1.903E�04 1.987 1.984 2.109 4.06E�01

.6
ors and rate of convergence for the problem considered in Fig. 6.1. The time step used in the calculation satisfies c Dt

Dx ¼ 1
4.

ber of cells Error in L2 norm Rate of convergence CPU time

Current method Particle method Current method Particle method Current method Particle method

32 6.834E�03 1.339E�02 – – 1.40E�01 1.56E�02
64 9.083E�04 3.190E�03 2.911 2.069 7.50E�01 4.68E�02
128 2.561E�04 7.532E�04 1.826 2.082 1.187 2.03E�01
256 6.474E�05 1.903E�04 1.984 1.984 3.093 8.12E�01
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embedded in the large periodic domain L ¼ 40, as shown in Fig. 6.3(a). The periodic domain, �20 6 x 6 20, is uniformly di-
vided into N ¼ 1280 cells. Fig. 6.3(b)–(d) shows the numerical solutions with different values of j at the final time t ¼ 10 for
the initial condition (6.8), demonstrating that the solution becomes more dispersive when j increases, in the sense that
more peaks occur when j is large. Using this example, we compare three methods, the implicit midpoint integrator, the trap-
ezoidal integrator (a symmetric time integrator), and the second-order BDF (BDF2) integrator for their capabilities of pre-
serving the Hamiltonians. The simulations are run to the final time t ¼ 10. The time step used for all three methods
satisfies Dt ¼ 1

80 Dx. The parameter j is 100. With this magnitude of j, there are more than a few peaks in the solution,
and preservation of Hamiltonians becomes more difficult for a numerical algorithm. A good numerical algorithm should ren-
der well preserved Hamiltonians. Fig. 6.4(a) shows that the midpoint method and the trapezoidal method preserve the Ham-
iltonian H1 very well compared with the BDF2 method. However, when we zoom in to the horizontal line in Fig. 6.4(a), we
see in Fig. 6.4(b) that the trapezoidal method creates small fluctuations while the implicit midpoint produces little to no
fluctuation.

6.3. Smooth travelling wave problem for j ¼ 0

In this example, we consider the non-dispersion case, j ¼ 0 in Eq. (1.1). Subjected to the initial conditions /ð0Þ ¼ 1 and
/xð0Þ ¼ 0, the smooth travelling solution of the non-dispersive shallow-water wave equation in periodic domains has the form
(a)

(c)

Fig. 6.3
(6.8). T
uðx; tÞ ¼ /ðx� ctÞ; ð6:9Þ
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he figures show that the solution becomes more dispersive when j increases. (a) Initial condition; (b) j ¼ 10�3; (c) j ¼ 1; (d) j ¼ 103.
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where / is the solution of
/xx ¼ /� a
ð/� 1Þ2

: ð6:10Þ
Choosing �a ¼ c ¼ 3, the period of the resulting smooth travelling wave is approximately equal to 6.46954603635 [24].
In Fig. 6.5, for the above smooth travelling wave problem, instead of plotting u, we plot the quantity a ¼ u2 þ u2

x , which is
the so-called energy density (the density function of the Hamiltonian H1) at the chosen times t ¼ 1; 2; 3; and 4. It shows that
the density function a behaves like a periodic function, which indicates the conservation of the Hamiltonian H1.

Besides the Hamiltonians H1 and H2 (6.7), we investigate the following less explored Hamiltonian for the shallow-water
wave equation:
H4 ¼
Z L

0
u2 þ 1

2
ðuxÞ2

� �
P þ u2

4
ðu2 þ 2ðuxÞ2Þdx: ð6:11Þ
The auxiliary variable P is described as follows: in [13], the shallow-water wave equation is written as an equivalent system
of hyperbolic-elliptic partial differential equations
ut þ uux þ Px ¼ 0; ð6:12Þ

� Pxx þ P ¼ u2 þ 1
2
ðuxÞ2 þ 2ju; ð6:13Þ
where
P ¼ 1
2

ejxj � u2 þ 1
2
ðuxÞ2

� �
: ð6:14Þ
Here � is the convolution operator. We note that the two-step iterative algorithm developed for solving Eqs. (1.2) and (1.3)
can be used to solve Eqs. (6.12) and (6.13) without any changes. For the limit case j ¼ 0, the energy density, a ¼ u2 þ u2

x ,
satisfies the transport equation [14]
at þ ðuaÞx ¼ ðu3 � 2PuÞx: ð6:15Þ
In Section 6.6, following the suggestion in [14], we couple Eq. (6.15) with Eqs. (6.12) and (6.13) and use the resulting system
of equations to solve the soliton–antisoliton collision problem. An algorithm similar to the two-step iterative method is
developed for this system of equations.

In Fig. 6.6, H4 is plotted versus time t for the smooth travelling wave problem, demonstrating that the Hamiltonian is well
preserved at the value of 44.2. We remark that the strategy of computing H4 is that (i) to compute u from the two-step iter-
ative algorithm, (ii) to solve another Helmholtz equation (6.13) to obtain P, and (iii) to numerically integrate Eq. (6.11) to
obtain H4.

Table 6.7 compares the grid refinement study of the two-step iterative method with that of the local discontinuous
Galerkin (LDG) method given in the paper by Xu and Shu [24] for the smooth travelling wave problem. The numbers of
H 1, t r a p e z o i d a l
H 1
, midpoint

H 1
, BDF2
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Fig. 6.5. Plots of energy density a ¼ u2 þ u2
x at different chosen times. (a) t = 1, (b) t = 2, (c) t = 3, and (d) t = 4. The plots show that a is a periodic function,

which indicates the conservation of the Hamiltonian H1 (see Eq. (6.7)).
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the grid points used in our calculation are comparable to the numbers of the cells used in [24]. The numerical solution ob-
tained with N = 1,00,000 is used as the reference solution [24]. The time step used in our calculation is Dt ¼ 10�4 for
N ¼ 10; 20; 30, and 60. The final time is t ¼ 0:5. Table 6.7 shows that the errors of our algorithm are smaller than those re-
ported in [24], in both L2 and L1 norms.

6.4. Two-peakon solutions

In this example, we show that the proposed scheme has the ability to capture the peakon solutions. Consider the initial
condition in a periodic domain
u0ðxÞ ¼ /1ðxÞ þ /2ðxÞ; ð6:16Þ
where
/iðxÞ ¼
ci

coshða=2Þ coshðx� xiÞ; jx� xij 6 a=2
ci

coshða=2Þ coshða� ðx� xiÞÞ; jx� xij > a=2

( )
: ð6:17Þ
We choose the coefficients to be c1 ¼ 2; c2 ¼ 1; x1 ¼ �5; x2 ¼ 5; a ¼ 30, which are the same as those employed in the paper by
Xu and Shu [24]. Initially, the primary peakon is located at x ¼ 10, and the secondary peakon is located at x ¼ 20. The non-
periodic initial condition is embedded in the periodic domain 0 6 x 6 30. In Fig. 6.7, we present the grid refinement study for



time

H
4

0 1 2 3 4

30

40

50

60

Fig. 6.6. The well preserved Hamiltonian H4 (see Eq. (6.11)) by the proposed algorithm. The initial condition is a smooth travelling wave with j ¼ 0 in Eq.
(1.1).

Table 6.7
The errors and spatial rates of convergence for the j ¼ 0, smooth travelling wave initial condition, (6.9) and (6.10) at t ¼ 0:5. A periodic domain
0 6 x 6 L ’ 6:46954603635 is used. The numerical solution obtained with N = 1,00,000 is used as the reference solution [24]. The time step used in the
calculation is Dt ¼ 10�4 for N ¼ 10; 20; 30, and 60. Note that the LDG method uses P2 elements with 10, 20, 40 and 80 cells.

Number of cells (number of
element cells)

Error in L2 norm Rate of convergence Error in L1 norm Rate of convergence

Current
method

P2-LDG
method

Current
method

P2-LDG
method

Current
method

P2-LDG
method

Current
method

P2-LDG
method

N ¼ 10ð10Þ 2.704E�03 1.41E�03 – – 6.061E�03 6.75E�03 – –
N ¼ 20ð20Þ 8.472E�05 1.49E�04 4.996 3.24 2.110E�04 9.06E�04 4.843 2.90
N ¼ 30ð40Þ 1.579E�05 1.70E�05 4.142 3.13 4.851E�05 9.85E�05 3.626 3.20
N ¼ 60ð80Þ 1.512E�06 8.95E�06 3.384 2.88 3.039E�06 4.96E�05 3.996 3.07
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the proposed algorithm using the two-peakon initial data. At the final time t ¼ 18, both peakons travel out and in the peri-
odic domain, and the primary peakon has overtaken the secondary peakon. Fig. 6.7(a) shows that visually our result has a
good agreement with that reported in [24]. Their result was computed using the P5-LDG finite element method with 320
cells. In (b), we zoom in to the right-hand-side peak and notice that after refining the grid, so that when the number of cells
is greater than N ¼ 3840, our numerical solutions become visually grid-independent and are different from the result re-
ported in [24]. Note that if the peak is located at one of the grid points, the second derivative uxx at that point is assigned
a large number initially, using the approximation of a one-sided second-order finite difference, and for the rest of grid points,
the derivatives are found exactly.

6.5. Initial data with discontinuous derivatives

Consider the initial condition in the domain of �30 6 x 6 30,
u0ðxÞ ¼
10

ð3þ jxjÞ2
: ð6:18Þ
We perform the grid refinement study for this initial data. The solutions are computed with the number of cells
N ¼ 640;N ¼ 1280, and N ¼ 1920. Similar to the two-peakon initial data, if the discontinuity of derivative is located at
one of the grid points, the second derivative uxx at that point is assigned a large number initially, using the approximation
of a one-sided second-order finite difference, and for the rest of grid points, the derivatives are found exactly. We compare
the results with the LDG solutions in [24]. The LDG solutions use 320 uniform P2 elements in the same domain. Similar to the
previous example, Fig. 6.8(a) shows that visually the two numerical solutions agree with each other quite well. If we zoom in
to the primary peak, we notice that after refining the grid, so that when the number of grid point is greater than N ¼ 1280,
our solutions become visually grid-independent and are slightly different from the result reported in [24]. This example
demonstrates that the proposed scheme is capable of resolving the emerging peak solutions.



(a)
6.6. Soliton–antisoliton collision

For the limit case j ¼ 0, the two-soliton dynamics of the shallow-water wave equation are studied in detail in [3,4]. An
exact solution is given for the perfectly antisymmetric ”soliton-antisoliton” collision case. This is a numerically challenging
problem, since the term uuxx tends to a sum of delta functions when the collision occurs. This suggests that the right-hand-
side of Eq. (1.3) becomes the derivative of a delta function when the collision occurs. To avoid this numerical difficulty, fol-
lowing the suggestion in [14], the Eq. (1.1) is written as an equivalent system of equations:
ut þ uux þ Px ¼ 0; ð6:19Þ

� Pxx þ P ¼ 1
2
ðu2 þ aÞ; ð6:20Þ

at þ ðuaÞx ¼ ðu3 � 2PuÞx; ð6:21Þ
where a ¼ u2 þ u2
x . The two-step iterative method developed for solving Eqs. (1.3) and (1.2) alternately can be used to solve

the above system of equations. In the first step, instead of solving one Eq. (1.3), we solve two Eqs. (6.19) and (6.21), to obtain
the next iteration of u and a. In the second step, we solve a Helmholtz equation to obtain the next iteration of the auxiliary
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Fig. 6.9. The soliton–antisoltoin collision: (a) is the initial condition, (b) is the beginning of the collision, (c) is the approximate time of the collision, and (d)
is post collision. The theoretical wave speed is c ’ 0:999977, and the theoretical collision time is tc ’ 5:69327. The computed solutions are compared with
the exact solutions in the figures. The simulation figures show that the proposed scheme not only accurately captures the wave speed and the collision time,
but the numerical solutions are indistinguishable from the exact solutions.
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variable P. The dispersion-relation-preserving scheme, the three-point compact Helmholtz solver, and the implicit midpoint
time integrator all remain unchanged.

Consider the soliton–antisoliton initial condition
u0ðxÞ ¼ e�jxþ5j � e�jx�5j: ð6:22Þ

The collision time tc and the wave speed c can be obtained by solving equation (4.26) in [4]
10 ¼ �2 log½sechð�ctcÞ	;

2 ¼ �2c
tanhð�ctcÞ

:
ð6:23Þ
Solving the above equations, we have c ’ 0:999977299777468 and tc ’ 5:693265068768256. Following the notations in [4],
we write solutions of the soliton–antisoliton collision as
uðx; tÞ ¼ c
tanhðcðt � tcÞÞ

½e�jx�qðtÞj � e�jxþqðtÞj	; ð6:24Þ
where
qðtÞ ¼ � log½sech2ðt � tcÞ	: ð6:25Þ
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