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The paper presents an iterative algorithm for studying a nonlinear shallow-water wave
equation. The equation is written as an evolution equation, involving only first-order spa-
tial derivatives, coupled with the Helmholtz equation. We propose a two-step iterative
method that first solves the evolution equation by the implicit midpoint rule and then
solves the Helmholtz equation using a three-point sixth-order compact scheme. The
first-order derivative terms in the first step are approximated by a sixth-order disper-
sion-relation-preserving scheme that preserves the physically inherent dispersive nature.
The compact Helmholtz solver, on the other hand, allows us to use relatively few nodal
points in a stencil, while achieving a higher-order accuracy. The midpoint rule is a sym-
plectic time integrator for Hamiltonian systems, which may be a preferable method to
solve the spatially discretized evolution equation. To give an assessment of the disper-
sion-preserving scheme, we provide a detailed analysis of the dispersive and dissipative
errors of this algorithm. Via a variety of examples, we illustrate the efficiency and accuracy
of the proposed scheme by examining the errors in different norms and providing the rates
of convergence of the method. In addition, we provide several examples to demonstrate
that the conserved quantities of the equation are well preserved by the implicit midpoint
time integrator. Finally, we compare the accuracy, elapsed computing time, and spatial and
temporal rates of convergence among the proposed method, a complete integrable particle
method, and the local discontinuous Galerkin method.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The shallow-water wave equation (which has come to be known as the CH equation, for Camassa-Holm equation) [3],

Up + 2KUy — Uy + 3ULUyx = 2Uylyy + Ullyxy, (1.1)

results from an asymptotic expansion of the Euler equations governing the motion of an inviscid fluid whose free surface can
exhibit gravity-driven wave motion [4,18]. The small parameters used to carry out the expansion are the aspect ratio, where-
by the depth of the fluid is assumed to be much smaller than the typical wavelength of the motion, and the amplitude ratio,
or ratio between a typical amplitude of wave motion and the average depth of the fluid. Thus, the equation is a member of
the class of weakly nonlinear (due to the smallness assumption on the amplitude parameter) and weakly dispersive (due to
the long wave assumption parameter) models for water wave propagation. However, at variance with its celebrated close

* Corresponding author. Tel.: +1 307 766 4368; fax: +1 307 766 6838.

E-mail address: llee@uwyo.edu (L. Lee).

0021-9991/$ - see front matter © 2009 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2009.07.030


http://dx.doi.org/10.1016/j.jcp.2009.07.030
mailto:llee@uwyo.edu
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

P.H. Chiu et al./Journal of Computational Physics 228 (2009) 8034-8052 8035

relatives in this class, such as the Korteweg-de Vries (KdV) and Benjamin-Bona-Mahony (BBM) equations, these small
parameters are assumed to be linked only by a relative ordering, rather than by a power-law relation. This allows us to retain
terms on the right-hand-side that would be of higher order with respect to both the KdV and BBM expansions, and, in prin-
ciple, to consider dynamical regimes in which nonlinearity is somewhat dominant with respect to wave dispersion. This
equation possesses the remarkable property of complete integrability, as evidenced by its Lax-pair representation, and per-
mits an infinite number of nonlocal conserved properties [3,21]. When k = 0 in Eq. (1.1), the equation becomes the disper-
sionless version of a shallow-water wave equation that admits peakon solutions.

There is extensive literature on numerical analysis and implementation for the KdV type of equations; however, numer-
ical algorithms for the shallow-water wave equation have only received attention recently. While no attempt will be made
here to provide a detailed reference list, the following are examples of recent algorithms developed for the shallow-water
wave equation. In [5-9], a completely integrable particle method is introduced that solves the equation in infinite domains,
semi-infinite domains with the zero boundary condition on one side, periodic domains, and homogeneous finite domains.
The particle method is based on the Hamiltonian structure of the equation, an algorithm corresponding to a completely inte-
grable particle lattice. Each periodic particle in this method travels along a characteristic curve of the shallow-water wave
model, determined by solving a system of nonlinear integro-differential equations. This system of nonlinear integro-differ-
ential equations can be viewed as particle interaction through a long-range potential (here position and momentum depen-
dent). Besides the particle method, a method based on multipeakons is developed in [16] for Eq. (1.1). The convergence proof
of this method is given in [17]. A finite difference scheme that can handle general H' initial data is introduced in [13]. A
pseudospectral method is developed in [19] for the travelling wave solution of Eq. (1.1). Similar methods, a semi-discretiza-
tion Fourier-Galerkin method and a Fourier-collocation method, are developed in [20]. A finite volume method, within the
adaptive upwinding context, is developed for the peakon solution of Eq. (1.1) [1]. A local discontinuous Galerkin finite ele-
ment method is developed in [24].

Eq. (1.1) involves two third-order derivative terms, utl, and u. For most numerical schemes, except the particle method
and the related methods, certain care is required to discretize those terms in order to achieve a higher-order accuracy while
preserving the physically inherent dispersive nature of the equation. In the study, however, we avoid discretizing both of the
third-order derivative terms by applying the Helmholtz operator to u

m(x,t) = (1 - d)u(x,t), (1.2)
and rewrite the Eq. (1.1) into an equivalent formulation
my = —2(mM+ K) Uy — umy. (1.3)

Note that Eq. (1.3) involves only the first-order derivative terms. As a result of the new formulation, we develop a two-step
iterative numerical algorithm that first solves the evolution Eq. (1.3) by a midpoint time integrator and then solves the Helm-
holtz equation (1.2) with a three-point sixth-order compact scheme. The first-order derivative terms in the first step are
approximated by a sixth-order dispersion-relation-preserving scheme that preserves the physically inherent dispersive nat-
ure. The compact Helmholtz solver, on the other hand, allows us to use relatively few nodal points in a stencil, while achiev-
ing a higher-order accuracy. The principle of the two-step iterative algorithm is to solve the first-order equation and then to
solve the Helmholtz equation, repeating the process until the convergence criterions are satisfied.

It is worth noting that the two-step iterative algorithm developed in the following sections can be generalized into a
framework of numerical methods that solve a whole class of partial differential equations involving the Helmholtz operator
[10]. We also note that a higher-dimensional extension of the shallow-water wave equation is the very well-known Navier—
Stokes-alpha turbulence model [11]. The proposed one-dimensional algorithm can be directly extended to solve the higher-
dimensional model (extension for other methods, such as the integrable particle method, may not be so straightforward).
The Navier-Stokes-alpha model potentially could answer some long-standing questions in the field of turbulent flows,
and an accurate numerical method could be the key to achieving the goal. A careful examination of the one-dimensional
algorithm is a fundamental first step on the path towards the development of a higher-dimensional algorithm.

2. Two-step iterative algorithm

The evolution Eq. (1.3) can be solved by a standard method of lines (MOL). Let m" = m(t", x) and m™*! = m(t" 4 At, x) be
the semi-discretized m values at time leveln and n + 1, respectively. The MOL, using the midpoint time integrator, for Eq.
(1.3) yields

m™! —m" 172 172 172 1/2
— = =2(m™V2 ey utt2 2 mne2, (2.1)
where
1 1
mn+1/2 — j(mnﬂ + mn) and un+1/2 — j(un+1 + un)_ (22)
n+1/2 n+1/2

The first-order derivative terms my and uy are approximated by a sixth-order dispersion-relation-preserving scheme,
using the nodal values of (2.2). We discuss the sixth-order scheme in detail in the next section. It is worth noting that the
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midpoint time integrator is a symplectic integrator for Hamiltonian systems [2,15], which may be a preferable method for
solving the system of spatially discretized equations. Since the evolution Eq. (2.1) is coupled with the Helmholtz equation, it
is necessary to introduce an iterative scheme to obtain m™' and u™' from m" and u". We do this by alternating between
solving Eq. (2.1) and the Helmholtz equation, as described in the following steps:

e Step 1: Given an initial guess for u™1/2 and m™**1/2, denoted u®"*1/2 and m©@+1/2 respectively, we solve the evolution Eq.
(2.1) to obtain m™M"+1, The initial guess is based on Taylor series expansions:

m(O)‘n+1/2 =1.5m" — O.Sm"’l,

y©n1/2 1 5y _ 0 5yn1 (2.3)

where n > 1. When n = 0, we impose m@1/2 = my and u©-1/2 = u,, where uy is the initial condition and mg = g — Ugyy.
e Step 2: Using m"™+1 and a three-point sixth-order compact scheme, we solve the Helmholtz equation to obtain u("+1,
e Step 3: Find m""+1/2 and uM"+1/2 by Eq. (2.2) and solve the evolution Eq. (2.1) to obtain m®-n+1,
e Step 4: Repeat Step 2 and Step 3 for the next iteration until the (i + 1) iteration, for which the residuals, in the maximum
norm, of both Eq. (2.1) and the Helmholtz equation are less than our convergence criterions:

m(i+1),n+l —m"

Enﬁl)lj T + (z(mn+]/2 + K) u)r;t+l/2 + un+1/2 m;1+1/2) < 8., (2 4)
=1
)Ti)lj‘m(iﬂ).nﬂ _ (u(i+l).n+1 _ ug{i;l).nﬂ)' < g,

where N is the number of grid points, and the value for the threshold error ¢ is typically chosen to be 107! throughout our
computations. Our numerical experiments indicate that the number of iterations needed for convergence with this value is
less than 20 in general.

We remark that for the initial guess (2.3), if we let t"™"1/2 = t* + At/2, the Taylor series expansions for m(t") and m(t" 1)
about t"*/2 give rise to

m(tn+1/2) _ 15m(tn) _ O.Sm(tn%) + O(Atz) (25)

Therefore, if we let m" = m(t") and m™! = m(t"1), the initial guess m"+'/2 in (2.3) is an O(At?) approximation for m(t"1/2).
3. Dispersion-relation-preserving scheme

The spacial accuracy of the proposed scheme depends on how accurately we can approximate the first-order derivative
terms. In particular, if the equation of interest is a dispersive equation, such as the shallow-water wave equation, a disper-
sion-relation-preserving scheme is necessary to ensure the accuracy of numerical solutions. In this section, we develop a dis-
persion-relation-preserving scheme for the first-order derivative terms.

Suppose that the first derivative term at the grid point i is approximated by the following algebraic equation:

om

1
x|l =n (C1mMi_s + CoMj_4 + C3Mi_3 + C4Mj_y + C5Mj_1 + CM; + C7Mjq + CgMiyy + CoMyy3). (3.1)

h
For simplicity, we consider the case involving only the positive convective coefficient in the above equation, since the der-
ivation will be the same for the negative convective coefficient.

Derivation of expressions for ¢; ~ cg is followed by applying the Taylor series expansions for m;.;, M., M;z3, m;_4 and m;_s
with respect to m; and then eliminating the seven leading error terms derived in the modified equation. Elimination of these
error terms enables us to derive the following set of algebraic equations:

i

Ci1+C+C3+C4+C5+C6+C7+Cg+C =0, (3.2)
—5¢1 —4cy —3c3—2¢4 —C5 +C7 +2cg + 3¢9 =1, (33)
25 9 1 1 9
7c1+8c2 +§c3+2(:4++§csic7+2c8 +§Cg:O, (3.4)
125 32 9 4 1 1 4 9

—T 1—?C2—§C3—§C4—6C5+6C7+§C8+§C9:07 (35)
625 32 27 2 1 1 2 27

C1+—5C+—5C3 +—C4+—C5+—C7+—C8+—C9:0, (36)

24 3 8 374724724773 8

—62—56 —gc —8—1c —ic —Lc +Lc +ic +8—]c =0 (3.7)
2471577407 15* 1200 71207 "15° T40 0 T '

3125 256 81 4 1 1 4 81

144 C]+TSCZ+%C3+EC4+ﬁOCS+ﬁOC7+Ecs+@C9:0 (3.8)

To uniquely determine all nine introduced coefficients shown in (3.1), we need two more equations. Following the sugges-

tion in [22], we derive the equations by preserving the dispersion relation that governs the relation between the angular
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frequency and the wavenumber of the first-order dispersive term. To obtain the two extra equations based on the principle
of preservation of the dispersion relation, we note that the Fourier transform pair for m is

m(k) = 21771 /m m(x) e % dx, (3.9)
mx) = /’m (o) e dk. (3.10)

If we perform the Fourier transform on each term shown in Eq. (3.1), we obtain that the wavenumber k is approximated by
the following expression

—i . . . . . . . .
k 27(0 e—lSkh +Cy e—14kh +03 e—l3kh +Cq e—lzkh +cs e—lkh +C+Cr elkh +cg elzkh +Co elBkh)7 (3—11)
where i = v—1. ~ ~
Supposing that the effective wavenumber k is exactly equal to the right-hand side of Eq. (3.11) [22], we have k ~ k. In
order to acquire a better dispersive accuracy, k should be made as close to k as possible. This implies that E defined in
the sense of the 2-norm of the error between k and k will be the local minimum for such a k. The error E is defined as follows

E(k) = /2 kh — kh[> d(kh) /2 =3 dy, (3.12)
where h is deno;ed as the grid size andzy = kh. For E to be a local minimum, we assume the following two extreme conditions
g—i =0, (3.13)
g—i =0 (3.14)

Under the above prescribed extreme conditions, the two algebraic equations needed for the coefficients to be uniquely deter-
mined are

4 4 4
— 501+ 403 + 2MCs + 405 — 507+ Co+ T =0, (3.15)
4 4
— 3G+ 4 +27Cs +4¢s — 505 +4=0. (3.16)
We remark that for a truly dispersion-relation-preserving scheme, i.e. the error E is truly a local minimum on the parameter
space, one will need to impose 9E/dc; = 0 fori=1,...,9 to obtain nine equations for the coefficients. Our approach, instead,

(i) ensures the higher-order accuracy by letting the coefficients satisfy the Taylor series expansions and (ii) partially enforces
the requirements for a dispersion-relation-preserving scheme. Our numerical experiments show that the upwinding scheme
for the first-order derivative obtained by taking the derivatives about c4 and c¢s for E (Egs. (3.13) and (3.14)) produces the
least numerical errors. It is also worth noting that the integration interval shown in Eq. (3.12) needs to be sufficiently wide
to cover a complete period of sine (or cosine) waves.

Egs. (3.15) and (3.16) together with Egs. (3.2)-(3.8) yield the coefficients:

‘ :L( 157572 — 83407 + 10624 ) (3.17)
50 \—124327 + 17408 + 220572 )’ '
3 [/ 7875m2 — 424807 + 55552
€= ——n , (3.18)
100 (-12432 7+ 17408 + 2205 n2>
. (55125n2 7303240n+406976> (3.19)
> 775\ —124327 + 17408 + 2205 12 '
o 1 (—621607‘: + 85888 + 11025 n2> (3.20)
10 \ —124327 + 17408 + 2205712 )’ '
12
= T521n-64) (3.21)
o1 (17325 72 — 1034407 + 153344> (3.22)
®~ 7700 \ —124327 + 17408 + 2205 12 '
o 1 (55125 72 — 3183607 +457664> (3.23)
7725\ —124327 + 17408 + 2205 72 '
Cs:_g(2625n2—15440n+22656> (3.24)
50 \—124327 + 17408 + 220572 )’ '

1/ 15m—44
“=% <105n - 272)' (3-25)
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It is easy to show that the proposed upwinding scheme for the first-order derivative is sixth-order spatially accurate:

om_ om, 48 1057 — 332 60'm (78757 — 393607 + 45824 h7 m o)+
Oox  ox 't 175 \-12432m+ 17408 +220572 ) ox7 © \ 124327+ 17408 + 220572

(3.26)
4. Three-point sixth-order accurate compact Helmholtz solver

We introduce a compact scheme for solving the Helmholtz equation in this section. It is well known that in order to ob-
tain a higher-order numerical method for the Helmholtz equation, one can always introduce more points in a stencil. The
improved accuracy, however, comes at the cost of an expensive matrix calculation, due to the wider stencil. With the aim
of developing a numerical scheme that is higher-order accurate while using relative few stencil points in the finite difference
discretization, we introduce a compact scheme involving only three points in a stencil, but is sixth-order accurate.

Consider the following prototype equation

2
%—ku:f(x). (4.1)

We first denote the values of d*u/dx2, 8*u/0x* and 6°u/dx® at a nodal point i as

o*u

o] =5 (4.2)
i

o*u

Rl (4.3)
i

o°u

6| = Wi (4.4)
i

The compact scheme at point i starts with relating », s and w with u as follows:

S0 h®W; + 9o h* v; + Bo hsi = oty Uiy + oo U; + 0y Uj_1. (4.5)

Based on physics, it is legitimate to set o; = o_; since the Helmholtz equation is elliptic in nature. Having set o; = o4, the
derivation is followed by expanding u;.; with respect to u;. Substitution of these Taylor-series expansion equations into Eq.
(4.5) leads to

hz azu,- h4 (941,[,' hs (961,[,' hs (981,[,'

« 1.6 4 2

doh Wi+'}/'0h Z/i+ﬁ0h si:(oc0+20£1)ul 2'(2061) 8X2+E( OC])W+6( OC])W+§( OC1)W+"'. (46)
Through a term-by-term comparison of the derivatives shown in Eq. (4.6), five simultaneous algebraic equations can be de-
rived. Hence, the introduced free parameters can be determined as oy =01 = —1,00 = 2,8y = -1,7, = — 15 and dp = — 3%

Pf; d“f,

Note that w; = K*u; + K*f; + ka4 5, vi = K*u; + kf; + "XQ, and s; = ku; + fi. Eq. (4.5) can then be expressed as

2 4
Orttior + (00 — Bo B2k — g K — S0 HOI )ty + ot 1 — [hzﬁﬂf+h4/0 (kf, f) + 185, (kﬁ+k§7§+g—)£>} 4.7)

It follows that

A 2 4 6,3 2, 1 .azf 6 azf 04f
u,+17<2+h k+—hk +360hk>u,+u11_hf,+12h<kf! 0x2)+360h (kﬁ ) 0x4 (4.8)

Using the proposed scheme, the corresponding modified equation for (4.1) can be derived as follows, after performing some
algebraic manipulation:

&u h® ofu AT

—ku=f+ =+ Tl

2 20160 ox8 = 1814400 ox10

Eq. (4.9) shows that the 3-point stencil scheme is indeed sixth-order accurate. We implement a multigrid method using the

V-cycle and fully-weighted projection/prolongation with the red-black Gauss-Seidel smoother to solve the system of alge-
braic equations arising from discretization of the proposed scheme.

+---+HOT. (4.9)
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5. Error analysis

In this section, we assess the proposed two-step iterative algorithm by providing a detailed error analysis for the mid-
point time integrator and the dispersion-relation-preserving scheme. After this we show the von Neumann analysis for
the midpoint time integrator. Close observation reveals that Eq. (2.1) is essentially a discretized version of a one-dimensional
linear scalar convection-reaction equation. Hence to analyze the error due to the proposed time-stepping algorithm and the
dispersion-relation-preserving scheme in the first step of the two-step iterative algorithm, we simply analyze numerical
solutions of a linear scalar convection-reaction equation obtained by the proposed schemes.

Consider a one-dimensional linear scalar convection-reaction equation

o 09 _
E—&-Caa-&-@(ﬁfq (5])

where ¢, and ¢, are given constants. Applying the midpoint time integrator to the equation yields

n+l _ n 1
S Sl @ ) e (7 )] =0, (52)

Substituting ¢! and ¢, approximated by the proposed sixth-order dispersion-relation-preserving scheme (3.17)—(3.23),
(3.23) and (3.25), into the above equation results in a nine-point-stencil difference equation at an interior point i:

1
(/5,rHl +§(A1¢?f5] +A2¢?f41 +A3¢?f31 +A4¢Fj21 +A5¢Fj11 +AG¢?H +A7¢?++]] +A8¢?f2] +A9¢?:31)
1
=i — j(/‘h i+ A, + Azl +Asdl, + Asdil | + A} + A797 + Asdl, + Asds), (5.3)

where A; = c,ciAt/h,i=1,...,5 and 7,8,9, and As = c.CsAt/h + c.At. If the initial condition is ¢(x,0) = exp( ikx), then the
exact solution of Eq. (5.1) is given by

d(x,t) =exp{ —c -t }exp{ ik(x — c.t)}. (5.4)

Suppose that a numerical solution is contaminated by numerical amplitude and phase errors and is expressed by

dx,t) = exp{—(crfj—;>t} exp {ik(x—ca%t>}, (5.5)

where the wavenumber k and the so-called modified wavenumber y = kh are defined in Section 3, Eq. (3.11). It is clear that if
k; = vy and k, = 2, then we do not have either phase or amplitude errors. Since the errors propagate in both time and space,
the propagated numerical solution can be written as

H(X+h,t+ At) = §(x,t) exp {— <c, i}%) At} exp {ik (h - ca%At> }, (5.6)

or

¢(X+ h,t+ At) = $(x,t) exp(ikh)exp(p +1iq). (5.7)

Comparing Egs. (5.6) and (5.7), we obtain the amplitude and phase errors, in terms of k. and k;,

o= 5
( 7 )
_q
ki = v (5.9)
where
_ CoAt _ch
Vx = T RXfE. (5.10)

To determine p and q in Eqgs. (5.8) and (5.9), letting ¢! = ¢(x, t) and substituting the expressions of ¢;, ¢;_;, ¢ir2, i3, Pi_4, and
¢;_s at the corresponding time levels, n or n + 1, into Eq. (5.3), we obtain

eﬁ(eifi + % (A1€l057) 1 A,el0-4) 4 A3e10-3) 1 A,el@20) 4 Acel@)) 4 Agell 4 A;e10+) 4 Agel@+2) 4 Agell@+37)y)

=1- j(/\161(750 + A0 A5l 1 ALel20) 1 Agel) + Ag + A7el) 1 Agel®) +A9e‘(3>')). (5.11)



8040 P.H. Chiu et al./Journal of Computational Physics 228 (2009) 8034-8052

From the imaginary and real parts of the above equation, we obtain p as functions of g:

bil } (5.12)

from the imaginary part of (5.11): p = log { i

+1m)sing —incosq
from the real part of (5.11):p=1o 1-5m 5.13
b A1) :p=log (1+1m)cosq+insing[’ (5-13)

where

m = As + (As + A7) cos ) + (A4 + Ag) cos(2y) + (As + Ag) cos(3y) + Az cos(4y) + A; cos(57)), (5.14)

n=(As —A;7)siny + (A4 — Ag) sin(2y) + (A3 — Ag) sin(3y) + Az sin(4y) + A; sin(5y), (5.15)
and log is the natural logarithm.

Solving Eqgs. (5.12) and (5.13) for g, we obtain
_ 4n
_ -1
q = —tan (7172 74+m2). (5.16)

It is shown in Fig. 5.1(a) that k; and y are visually indistinguishable when y < 1.9. This means that there are small or no errors
for the method when 7y < 1.9. Here k; is plotted against y for v, = 0.1 and Ry = 1. For a large 7, either due to a large step size h
or due to a larger wavenumber k, or both, the predicted phase of the numerical solution is less accurate. Similarly for the
amplitude error, Fig. 5.1(b) shows that k. and y? are visually indistinguishable when 7y < 1.7.

In addition to phase and amplitude errors, the numerical group velocity is also an indication of the quality of numerical
algorithms, especially for numerical algorithms that solve dispersive equations. From Eq. (5.5), the numerical group velocity
is found by

Cg:d—w, where w:cak&. (5.17)
k Y
When k; = 7, the exact group velocity C. = ¢,. Fig. 5.2 plots the ratio of the numerical group velocity C, and the exact group
velocity C, versus 7. It shows that when y < 1.7, the numerical group velocity and the exact group velocity are almost iden-
tical. When 7 increases, the numerical group velocity becomes less accurate.

The von Neumann analysis [23] shows that the proposed midpoint time integrator is unconditionally stable. To this end,

define the amplification factor of the numerical solution at the grid point i to be
n+1
G= qbl—n, (5.18)
1

and G can be written in the form

G=-¢eP(cosq+ising), (5.19)
or: — O
. ———— Numerical / 25 Numerical
[ —— — — Exact // [ — — — — Exact
2.5’_Vx=0.1,Rx=1 // i v,=0.1,R =1
B Vd 20
R 7/ -
B vz B
2K+ £ L
B 15
B 10 A
1L - -
| - 7
| 7
- 7~
n - //
05 51 e
07\\\\|\\\\|\\\\l\\\\l\\\\l\\\\l\ 074w TR SN SRR NN RAVANAN S SRR A
0 0.5 1 15 2 2.5 3 0 0.5 1 15 2 2.5 3
Y Y

Fig. 5.1. The dissipation and phase (dispersion) error analysis. (a) The plot of k;, the phase error plot. k; and the modified wavenumber 7 are visually
indistinguishable when y < 1.9. (b) The plot of k,, the dissipation error plot. k, and y? are visually indistinguishable when y < 1.7.
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where p and q are the same as those defined in (5.7), (5.12), (5.13), and (5.16). Define the modified frequency

2mm
B=ar

where h is the grid size, and 2L is the period of fundamental frequency (m = 1). Since Mh = L, we have 0 < y, << 7. As
shown in Fig. 5.3(a), since the magnitude of the modulus |G|, plotted versus J,, is smaller than one, by definition the proposed
scheme is classified to be unconditionally stable. The amplification factor shown in (5.19) can be rewritten in the exponential
form as G = |G| ei?, where the phase angle 0 is defined to be

h, m=0,1,23,....M, (5.20)

_1|Im(G)
= ! . 21
0 = tan Re( G)' (5.21)
The exact phase angle is 0. = —y, Vx, where v, is given in (5.10), and the relative phase-shift error is then given as
tan-! |m©
P i LGl (5.22)
0e —x Vx

Fig. 5.3(b) shows & plotted versus y, for v, = 0.1 and R, = 1. It shows that & =1 before y, reaches /2, i. e. the relative
phase-shift error is either very small or nonexistent before the modified frequency y, reaches /2.

6. Numerical results and validation

In this section, we provide several test problems to validate the proposed scheme and elucidate its computational
properties.

6.1. Travelling wave solution in periodic domains
The first example is the traveling wave solution in periodic domains considered in [8,9]. The periodic travelling wave

solution is given by u(x, t) = U(x — ct), provided that the minima of u are located at u = 0 and the wave elevation is positive.
In this case one finds that the solution of the travelling wave equation is given by

(6.1)

3 2
U,:i%zj +(C_C2—K)l§] +CAU

where ¢ and A are denoted as the wave speed and the wave amplitude, respectively, and the integration constant C is a func-
tion of A. Integration of Eq. (6.1) leads to the expression,
2

=—F—(01— 2
X= ) (b1 = bo)II(@, B, T). (6.2)

1.2
i c,/¢c,
L — — — — Exact
1 ________
- v,=0.1,R =1
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R |
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Fig. 5.2. Plots of the ratio of group velocity %" against the wavenumber y at Ry = 1 and v, = 0.1.
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(a) unit circle v,=0.1,R, =1 (b)

unit circle v,=0.1,R =1

Amplification factor |G| Phase errorratio 6/ 6,

Fig. 5.3. Plots of |G| and . versus y, at v, = 0.1 and R, = 1. Note that the angle ¥, is from 0 and 7, counterclockwise. (a) The modulus of amplification factor
|G|. (b) The relative phase-shift error .#. They show that both the amplitude and the phase either have very small errors or have no errors at all before the
modified frequency y, reaches /2.

The wavelength L of this periodic solution can be written as
4
L= ———— (b1 — b)II(p. f°.T). 6.3)
v/bi(b2 —bs)
Details about the variables x, @, 8,b; (i=1,...,3), ¢, and T are discussed in [8,9].

The parameters used in the test problem are ¢ = 2, k = 1/2, and the integration constant C = 1, which altogether yield the
wavelength (period) of L ~ 6.3019 according to Eq. (6.3). The total time for the wave to travel through the domain and back
to the initial position is t = 3.1509. The time step used in this calculation is At = } Ax while the grid size is Ax = 0.0492 (or
128 cells). Fig. 6.1(a) shows the numerical and the exact solutions at t = 0.788. The initial data is the dashed line. A good
agreement with the analytic solution is clearly demonstrated. To show that the proposed scheme is phase accurate, we also
plot the predicted solution at t = 3.1509. As Fig. 6.1(b) is shown, the waveform over one period of time and the waveform of
the initial data are visually identical.

It was shown in [5] that Eq. (1.1) can be written as

oWy O(uWy)

ot +78x =0, (6.4)

(a) 2 (b) 2

|| ———— Present, N=128 att=0.787732 L

| L Exact, att=0.787732 | ——— Present, N=128

— — =— initial data L] Exact
15
3 5 1
05
||||||||||||||||\|7~|| 0 AT N W NN N TN (NN A AN A A A A
3 4 5 6 0 1 2 3 4 5 6
X X

Fig. 6.1. The predicted traveling wave solution at (a) t = 0.787732, (b) t = 3.1509 (over one period). The numerical solutions are compared with the exact
solutions that are plotted using square boxes in the illustrations.
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where W, (=2Y) is defined as /m + &, and m = u — uy,. If we define

L
W:/ W, dx, (6.5)
0

then we can write Eq. (6.4) as

Wi+ uWy, =0. (6.6)

This is an advection equation, where the conserved quantity W is advected by u and is therefore a constant in time. In Fig. 6.2,
we plot the conserved quantities, mass, the Hamiltonians, and W versus time, where the mass and the Hamiltonians are de-
fined as

L L L
M :/ udx, Hi :%/ (u? + (u)®)dx, H, :%/ W + u(uy)® + 2xu®)dx. (6.7)
0 0 0
Fig. 6.2 clearly shows that the mass is well preserved, with the magnitude of 3.428, by the proposed algorithm. The Ham-
iltonians H; and H, are also invariant with the values of 2.996 and 5.163. The conserved quantity W is well preserved by
the algorithm and has the value 5.452.

We conduct both grid and time refinement studies for the proposed method. The spatial rate of convergence test is carried
out at the constant time step, At = 0.12308 x 1073, that is much smaller than the grid size of the finest grid. As for the tem-
poral rate of convergence test, we simply consider the case using a fixed grid size Ax = 0.0492, which is smaller in magnitude
than the finest time step used in our calculation. The final time for both tests is t = 3.1509. The spatial and temporal rates of

6_
]
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Fig. 6.2. Verification of the proposed algorithm. It shows that the quantities M, H;, H,, and W (see Egs. (6.7) and (6.5) ) for the travelling wave problem are
well preserved by the proposed algorithm for ¢t > 300 (the time period of 100 cycles, i.e. the initial waveform goes out and in the periodic domain 100
times.)

Table 6.1
The spatial rate of convergence for the problem considered in Fig. 6.1. Note that the time increment At = 0.12308 x 10~ is much smaller than the grid size.
Number of cells N 32 64 128

Error in L, norm 5.8714E-03 1.686E—-04 3.290E-06
Rate of convergence - 5.121 5.679

Table 6.2
The temporal rate of convergence for the problem considered in Fig. 6.1. The number of cells in the calculation is N = 128.
At 2.46E—-02 1.23E-02 6.15E-03

Error in L, norm 4.026E-03 1.025E-03 2.561E-04
Rate of convergence = 1.973 2.000
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convergence are shown in Tables 6.1 and 6.2, respectively. The convergence rates are found approximately 5.4 in space and 2
in time, respectively, for the proposed scheme.

Table 6.3 shows the comparison between the proposed method and the particle method developed in [8,9] at the final
time t = 3.1509 (over one period). A fixed small time step At = 0.12308 x 10 is used for both methods. For such a small
time step, the proposed method has much smaller errors compared with the particle method. Tables 6.4, 6.5 and 6.6 show
similar comparisons of the two methods, but the solutions are computed using a fixed ratio of c£%, where c is the wave speed.
They show that the proposed method has smaller errors in the L, norm, but is less efficient than the particle method. They
also show that when c4! decreases, the errors of the proposed method decrease as well, but there is no s